
1

A set of tools for building PostgreSQL distributed
databases in biomedical environment.

M. Cavalleri, R. Prudentino, U. Pozzoli, G. Reni

IRCCS “E. Medea”, Bosisio Parini (LC), Italy. E-mail: greni@bp.lnf.it

Abstract – PostgreSQL is an advanced Object-
Relational DBMS supporting SQL constructs and
accessible with standard protocols. Its object-
oriented features qualify it for managing biomedical
data and it is freely available to the community via
the open-source philosophy. Unfortunately the
current available version does not support any
database distribution feature.
The aim of the present work was to develop specific
procedures in order to extend original potentials of
PostgreSQL ORDBMS and make it able to manage
distributed databases by means of asynchronous
replication. Particular attention was devoted to
conflict resolution rules, including several
procedures with different degrees of restrictiveness
and even giving the end user the possibility to write
user-defined conflict resolution procedures.
The replication system was tested at the IRCCS “E.
Medea”, an Italian Scientific and clinical research
Institute spread over 5 sites in different
geographical locations. The testing system was
developed with the purpose to make clinical data
collected by Epileptology Units in each site available
to all branches, without having to care for their
physical distribution.
The proposed replica procedures manage only
traditional (non-binary) data types because of the
very different storage model of large objects. Since
large objects are very common for treatment and
storage of biomedical data, we are currently
working on an improved version of the replica
engine that allows large objects to be replicated.

Key words – distributed database, ORDBMS,
biomedical data

I. INTRODUCTION

In the last years data communication evolution has
rapidly and substantially changed the way information
is managed. The growth of low price connectivity and
the improvement of the data storage technology led
people to ask for even more information to be always
accessible and from everywhere.
New technologies were developed to share data
scattered on the net (eg. MIDAS, CORBA), but
sometimes data aggregation is also needed. For
example, if we want to get a unique set of data from
databases scattered on different sites, these new
technologies require a data distribution mechanism.
PostgreSQL [1,2] is an advanced Object-Relational
DBMS supporting SQL constructs and accessible with

standard protocols. Its object-oriented features qualify
it for managing biomedical data [3] more than other
RDBMS and it is freely available to the community via
the open-source philosophy. Unfortunately, the current
version does not support any database distribution
feature.
Data Replication is a process that allows to build a
distributed database through the management of
multiple copies of data, caching one copy on each site
[4] (Fig. 1). In particular, synchronous replication (also
called real-time data replication) conveys information
in real time to all of the involved sites. On the contrary,
asynchronous replication (store and forward
replication) stores operations performed on a database
in a local queue for later distribution by a database
synchronization process.
Synchronous replication technology ensures the highest
level of data integrity but requires a permanent
availability of servers and transmission bandwidth. On
the other hand, asynchronous replication provides more
flexibility than synchronous replication as a database
synchronization time interval can be defined which can
vary from minutes to months and, moreover, a single
site could work even if a remote server is unreachable
or down. In addition, data operations are performed
more quickly and network traffic is more compact.
However, a complex replication planning is required in
the case of asynchronous replication in order to detect
and correct data conflicts due to concurrent
modifications occurring at different sites between two
database synchronization events.
The aim of the present work was to develop specific
procedures in order to extend original potentials of
PostgreSQL ORDBMS and make it able to manage
distributed databases by means of asynchronous

Figure 1: Working scheme of data replication. In this
example three sites are considered.

Site 2Site 1

Site 3

Local operations

Forwarded operations

2

replication. Because of the nature of biomedical data,
particular attention was devoted to conflict resolution
rules, including several procedures with different
degrees of restrictiveness and even giving the end user
the possibility to write user-defined conflict resolution
procedures.
In the following sections the main issues regarding the
development and abilities of the new replication
procedures are addressed. First, we describe the
mechanism built to uniquely identify a record into the
distributed database. Second, we analyze the logger
that allows forward and roll back transactions. Third,
we examine the module that joins the transactions
coming from remote sites preserving data integrity in
line with specified conflict resolution rules. Finally, we
provide some implementation details for each of the
previous steps.

II. IDENTIFICATION OF DISTRIBUTED DATA.

Any table in a distributed database can be represented
in the following form:

� ijNj ijaiaia RPT
≠=

∪=
,...1 ,,,, (1)

where a identifies a generic table of the database

i identifies the site (site-id),
Ta,i is the entire content of table a on site i,
Pa,i is the information entered in table a on site
i,
N is the number of sites,
Ra,j,i is the replicated partition inside table a
coming from site j cached into site i.

Each site is identified with a site-id i. Pa,i and Ra,j,i are
partitions of table Ta,i. When an insertion occurs in
table a on local site i the information is stored in the
local partition Pa,i and later forwarded to every
replicated partition Ra,i,j of each remote site j. A
mechanism for the unique identification of a record
either in local (Pa,i) or remote (Ra,j,i) partition is
required.
Since the record-id number is site-dependent
information that is unique for each record stored in a
local database but is not unique in a distributed
database, for each record we keep track of the insertion
site-id (master site) together with the record id number
related to the master site. Both local and replicated
copies of the record contain this information that is
combined with a map of the distributed tables to ensure
unique identification of each record. By this way we
can always know the origin (master site) of a record
and we can represent each table as logically splitted
into partitions (1).
Taking advantage of the method we can freely adopt
one among the most common replication data
ownership models, and eventually apply the selected
model to a reduced set of tables. In particular,
Workload Partitioning data ownership model [5] is

implemented by read-only access to Ra,j,i and read-
write access to Pa,i.(Fig. 2). The Master/Slave [6] data
ownership model is obtained by read-write access to
Ra,j,i and Pa,i when the site i is Master for table a, and
by read-only access to Ra,j,i and Pa,i when the site i is
Slave. Update Anywhere [7] data ownership model is
obtained by read-write access to Pa,i and Ra,j,i.

III. LOGGER FOR FORWARD AND ROLL BACK

TRANSACTIONS

Let us consider Ta,i(t0) a generic table of the database at
a given initial time t0. At any following time t, the same
table Ta,i(t) will be a function of the initial status Ta,i(t0)
and of the sequence of operations applied to it in the
interval [t0 - t]. We store each operation applied to table
Ta,i as a record in table Ca,i thus obtaining

)](),([)(,0,, tCtTftT iaiaia = (2)

where f() is the function able to apply the sequence of
operations Ca,i(t) to table Ta,i(t0).
It is possible to define a roll back function f-1() too,
which is able to apply the sequence of operations Ca,i(t)
to table Ta,i(t) in a reverse way, obtaining

)](),([)(,,
1

0, tCtTftT iaiaia
−= (3)

As table Ta is replicated at several sites, we have a
different Ca,i at each site as well as a different Ta,i(t).
The actual and aligned replicated table Ta(t) containing
every operation performed both in local and remote

Figure 2: Workload partition data ownership model obtained allowing
users to modify local partitions only.

Ta,1
Ta,1 Ta,2

Ta,2 Ta,3
Ta,3

R a,3,1 R a,3,2 Pa,3
Pa,3

Pa,1
Pa,1 R a,1,2 R a,1,3

R a,2,1 Pa,2
Pa,2 R a,2,3

Site 1 Site 2 Site 3

Local users operations Forwarded data streams

��

��

��

3

sites will be obtained considering changes Ca,j(t)
occurred in each site j and applying them to the table
Ta,i(t0) in a generic site i:

])(),([)(
...1 ,0, � Nj iaiaa tCtTftT

=
= (4)

IV. REPLICATION CONFLICTS MANAGEMENT

An asynchronous replication system allowing data
updates in each site (update anywhere data ownership
model) may cause some replication conflicts between
various Ca,j(t).
A uniqueness conflict occurs when different sites try to
insert different records with the same unique key.
An update conflict occurs when different transactions
on different sites refer to the same record and the
requested operations are inconsistent.
The number of conflicts increases with the number of
sites N and the time interval between two database
synchronization events.
We implemented a conflict resolution module that acts

as a filter on ∪ j=1..N Ca,j(t) forwarding only operations
that can be completed according to the resolution
algorithms defined for each table. This particular
conflict management scheme allows serial application
of resolution algorithms, making it possible, for
example, to check some sort of data consistency based
on medical group privileges priority, after preliminary
conflict resolution.
A set of record-based conflict resolution algorithms
was also developed in order to reduce the number of
rejected operations due to update conflicts. These
algorithms were based on the following two
observations: it is always possible to identify an
intermediate period without any update conflict [t0,tc],
being t0 ≤ tc ≤ t; it is usually possible to modify the
sequence of operations on different records preserving
data integrity and shifting tc as close as possible to t.

V. IMPLEMENTATION DETAILS

In our system replica actions are controlled by a
specific database administrator username (replicator).
An automatic mechanism checks this username in
order to prevent unwanted operations from being
recorded on Ca,i(t) during replica process.
A complete map of all the tables making up the
database and the rules for their replication is stored in a
set of tables, called Replica Scheme Tables (RST),
specifically designed to provide flexible definition of
distribution of the tables over the sites. For example,
tables can be independently replicated in different
subsets of the distributed database.

Modifications to data stored in RST fire triggers that
qualify or retreat a generic table from being replicated,
dynamically creating or destroying triggers and
auxiliary tables for logging applied operations, greatly

reducing the DBA tasks. In particular, each replicated
table Ta,i has its own auxiliary table Ca,i in which
sequences of applied operations are stored.
The object-oriented features of PostgreSQL make it
possible to inherit each auxiliary table from its original
one, thus keeping the same record structure. Additional
information such as timestamp, type of operation
(insert, update, delete) and user name are recorded too,
to allow construction of advanced security algorithms
for data replication, visibility and treatment.
To accomplish replicated database synchronization a
massive planning and coordination of various steps is
required because of several distributed and parallel
processes running at different sites.
The DBA plans the scheduling of the replication
process that can be started from any site at any time.
The site where the replication process starts is defined
as replica-master site, which will coordinate each step
during that particular replication. A replica daemon
running on each site answers requests coming from the
replica-master site.
During database synchronization (Fig. 3), the generic
site i creates a set of data Ci(t) that contains operations
applied inside the site to any replicated table since the
last synchronization event. This set of data is
transmitted to every destination site and filtered by the
conflict resolution module.
The conflict resolution module contains several
predefined algorithms that manage common conflict
situations, whose probability is related to the number of
sites, the synchronization interval, the type of
application running on the database, the replication
data ownership model chosen. Custom procedures that
improve flexibility of the replica process can be written
too and added to the module.
The DBA chooses the conflict resolution algorithm to
be used with each table and stores this information in
the RST. The DBA can also specify if operations rolled
back by conflict resolution algorithms have to be
signaled to the end user with e-mail messages.

Special attention is devoted to data propagation
planning and data are compressed during transmission
in order to minimize bandwidth requirements and
speed up the process. Data encryption is also available
to ensure data privacy.
Trigger procedures were written in the procedural
language PL/Tcl. The daemon was written in Tcl [8]
linked with PostgreSQL connectivity API and using
Tcl/DP libraries for the communication layer over
TCP/IP sockets.
The replication system was developed on a PC with
CPU Intel Pentium III running Linux Red Hat 6.0 with
kernel 2.2.5. The tests were performed on SUN
SparcStation 20 and SUN Ultra 1 running Unix Solaris
2.x, and on PCs with CPU Intel Pentium II and III
running Linux.

VI. CASE STUDY

The replication system was developed and tested at
IRCCS “E. Medea”. The IRCCS “E. Medea” is an

4

Italian Scientific and clinical research Institute spread
over 5 sites in different geographical locations,
connected through a private network.
The testing system was developed with the purpose to
make clinical data collected by Epileptology Units in
each site available to all branches, without having to
care for their physical distribution.
A Workload Partitioning replication data ownership
model was chosen because the Health and Management
Direction asked to put read-only limitations to remote
departments.
The application was tested successfully.

VII. CONCLUSION

In the present study we developed a set of tools to
extend capabilities of PostgreSQL in order to make it
able to manage database replication in different sites.
The new set of tools implements asynchronous data
replication over several sites connected by a wide area
network. Having more than one copy of the same
database increases availability of the system, ensuring
data access or data backup even if some servers are
down or not reachable. Better performances are also
obtained working on local data. One of the drawbacks
is that local operations performed in different sites
between two database synchronization events lead to
temporary data inconsistency over the whole system.
The system was tested in a clinical research institute
and gave encouraging results.
The proposed replica procedures manage only

traditional (non-binary) data types because of the very
different storage model of large objects. Since large
objects are very common for treatment and storage of
biomedical data, we are currently working on an
improved version of the replica engine that allows
large objects to be replicated.

VIII. ACKNOWLEDGMENTS

Replication procedures were built using many free
software tools. The authors wish to thank PostgreSQL
development team for making available the source
code which was the starting point of this work. We
would also like to thank developers of the Tcl language
and developers of the extensions reported in the
previous sections.

IX. REFERENCES

[1] Stonebraker, M., The design of the POSTGRES storage
system, Proceedings of the Thirteenth International Conference
on Very Large Data Bases, Sept. 1987; 289-300

[2] Stonebraker M., Kemnitz G., The POSTGRES next-
generation database management system, Communications of
the ACM, Oct. 1991, vol.34, (no.10):78-92.

[3] Diallo B., Travere J.-M., Mazoyer B., A Review of Database
Management Systems Suitable for Neuroimaging, Methods of
information in medicine, F. K. Shattauer, Feb. 1999

[4] Chen S. W., Pu C., A structural classification of integrated
replica control mechanism, Technical Report CUCS-006-92,
Columbia Univ., New York, NY, 1992.

Figure 3: Replica process schema. User operations on a shared table are captured and stored into auxiliary tables. During
database synchronization phase local streams are propagated over involved sites and locally filtered by Conflict Resolution
Module; Transaction Engine Module applies accepted operations and roll back rejected ones.

site site ii

Conflict
Resolution

Module

Transaction
Engine
Module

Capture
Trigger CA,i

CA,iTA,i
TA,i

Capture
Trigger CB,i

CB,iTB,i
TB,i

Data
Propagator

Module

User originated operations

Captured user operations

Auxiliary change table reading

Repl icator originated operations Auxiliary change table updating

Data propagated towards other sites

Data coming from other sites

5

[5] Enterprise Replication: A high-performance solution for
distributing and sharing informations, INFORMIX Software
Inc.

[6] Comparing Replication Technologies, PEERDIRECT Inc.
[7] Oracle8™ Server Concepts: Database Replication, Oracle

Corporation.
[8] Ousterhout J., Tcl and the Tk Toolkit, Addison-Wesley, 1994.

